If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9v^2-100=0
a = 9; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·9·(-100)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*9}=\frac{-60}{18} =-3+1/3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*9}=\frac{60}{18} =3+1/3 $
| -2(g-39)=-32 | | 4=10+3d | | 3a-14=7 | | 5(p-6)=2p= | | m^2-64=36 | | 49.95+-17.50m=364.95 | | 3x+7-5x=18-3 | | m+24=12 | | x-(-27)=-12 | | F(x)=2x+3.4-2 | | 98751025701x+2942=800 | | 144y^2-100=-91 | | 3t^2-+19t+16=0 | | 7x-5=3x+33 | | 54+s=132 | | 3x=2x-x=36 | | 10x+6-2x+4=18 | | 1/2+2=3/4x+21/2 | | 12(n-6)=144 | | 70=10(k+3) | | 1s-14=96 | | 27-4x=12+11x | | 7x+10=10(x+7) | | 10=6-2/7x | | 4r^2-94r+345=0 | | j^2=121 | | 18-4w=10 | | (7/3)(x+(9/28))=20 | | 9(3+4w)=6w–3(7–8w) | | -5x^2-530=90x | | q^2=-79 | | 3x-51=39 |